按工作原理详解汽车主要传感器分类

时间:2024-01-14 作者: 产品展示
详细介绍

  汽车电子控制管理系统普遍遵循感知→控制→执行的工作流程。传感器作为感知单元获取系统的工作状态,控制单元处理传感器信号并计算输出控制指令,最终由执行单元完成相应动作。

  以电动助力转向系统(EPS)为例, 车辆运行过程中, 方向盘扭矩转角传感器监测方向盘转角及扭矩信息,轮速传感器监测车轮转速, 控制器(ECU)通过CAN总线实时获取传感器信号, 并根据特定逻辑实时处理信号,计算得到一个理想的助力力矩, 最后通过MOSFET控制电机,实现助力效果。

  汽车动力、底盘、车身、电气四大系统中,绝大部分的电子控制具备类似的工作原理,从感知、控制到执行环节,半导体器件无处不在,包括感知系统的传感器,控制环节的微控制器(MCU)、通信芯片(CAN/LIN 等)、模数转换器(A/D),执行环节的功率器件(MOSFET、IGBT、DCDC)等。其中传感器更是汽车的机会所在。

  汽车传感器可分为车辆感知、 环境感知两大类。动力、底盘、车身及电子电气系统中的传感器属于车辆感知范畴,ADAS 以及无人驾驶系统中引入的车载摄像头、毫米波雷达、激光雷达等属于环境感知范畴。本文重点介绍车辆感知传感器,环境感知传感器将在后续专题中介绍。

  按照工作原理,传感器主要可分为MEMS、磁、化学、温度四大类,我们统计传统汽油车上 MEMS 传感器超 50 个, 磁传感器超过 30 个,合计占比约 90%。

  传感器企业中,既有 Bosch、 Infineon、 NXP 这些巨头, 产品线齐全,产业链完整,从芯片设计、生产,到传感器产品的研发、配套,均具备很强的能力;也有 Allegro、Melexis、 ST、 NTK 等专注在部分领域或产业链环节,规模相对适中,同样具备很强的市场竞争力。

  据我们统计,目前一台中高配汽油车拥有超过 90 个传感器,单车价值量超过 2000元。其中动力传动系统 45-60 个左右,单车价值 1000-1700 元;底盘安全系统 30-40 个,单车价值 500-1000 元;车身系统超过 20 个,单车价值至少 200-600 元。

  动力系统:需要进排气压力类、冷却液/燃油/机油温度类、空气流量、曲轴/凸轮轴位臵及转速、爆震、氧传感器等多类型传感器同时监测发动机运作时的状态,我们估计所需传感器数量为 30-40 个。从价值量来看, 转速及位臵类磁传感器大多在 10-30 元范围,低中压 MEMS 15-30 元,热敏元件普遍 5-10 元,气体类、高温、高压类技术壁垒较高,比如尾气压差 GPF、排气温度传感器大约 50-60 元, 氧传感器大约 100-150 元。

  传动系统:涉及到离合器和变速器等复杂机械工况,需要离合器/变速器齿轮、变速器档位等位臵传感器、输入/输出轴转速传感器和液压油/冷却液温度传感器等多种类型的传感器,我们估计大约 15-20 个。

  底盘及车身安全系统:传感器遍布制动系统、转向系统、车身稳定系统及安全气囊系统中,我们估计共有 30-40 个。比如,加速度/角速度传感器大范围的应用于安全气囊系统、ESP 电动助力转向系统、惯导模块系统中。

  车身舒适性系统:包括雨量传感器、日照传感器、雨刷电机/车窗升降电机转子位臵传感器、空调系统传感器等,我们估计会超过 20 个,普遍单价较低。

  纵观整条产业链, 磁传感器芯片竞争格局十分集中,全球 5 家芯片供应商 Allegro、TDK、 Melexis、 Infineon、 NXP 几乎垄断市场;相比较而言, 全世界汽车磁传感器供应商相对分散, Bosch、 Delphi、 Conti、 Denso 等众多 Tier1 均有相应产品系列,与具体应用的汽车电子系统为 OEM 统一配套。

  对于磁传感器来说, 我们估计芯片的成本占比超过 60%(磁性元件通常与ASIC封装在一起),传感器供应商在产品端二次开发的空间被压缩,导致产品趋于同质化,因此与整车厂的配套关系尤为关键,其中产品的质量、价格、服务是制胜要素。

  我们认为芯片主导了磁传感器的发展的新趋势,集成度慢慢的升高:1)磁性元件与 ASIC集成:从多芯片到单芯片的集成封装;2)双传感器集成:EPS 等功能安全等级高的系统,对传感器冗余要求高,通常配备两个转矩、踏板位臵传感器,双传感器集成封装有助于缩小尺寸、降低成本。

  目前汽车上应用的磁传感器大多基于霍尔效应的原理,简称为霍尔传感器。主要用来测量运动量,如位臵、角度、速度、电流等, 分为霍尔开关、位臵霍尔(线D)、转速霍尔、电流霍尔及导航系统磁力计等类型。

  霍尔传感器的技术和产品应用已十分成熟, 平均每辆汽油车 35-50 个,单车价值量 500-1200 元。

  1、汽车电子配臵不断的提高,比如电动助力转向(EPS)、电子踏板、电动座椅等;

  2、 3D 霍尔的应用,基本的产品为旋钮式换挡器、 电子节气门阀位臵传感器、 EGR 阀位臵传感器等, 从高档车向经济型车不断渗透。

  全球主流的汽车霍尔传感器供应商主要有 Bosch、 Denso、 Continental、 Valeo 等众多 Tier1,普遍从 Melexis、 Infineon、 TDK-Micronas 等芯片厂商处采购磁传感器芯片,依据自己电控系统要求来设计传感器产品,最终大多以系统的形式供应给 OEM。而Sensata 则是一个特例,不以系统的形式配套,而是仅将单个传感器产品出售给 OEM。

  霍尔传感器的测量原理。霍尔效应是指当电流通过磁场中的霍尔元件时,磁场会对霍尔元件中的电子产生垂直于电子运动方向的作用力,使得在垂直导体与磁感线方向正负电荷聚集,形成霍尔电压。霍尔传感器的测量原理是运动切割磁感线引起磁场以及感应电流的变化,最后导致霍尔电压的变化,依据该变化来探测目标的运动状态变化。

  AMR、 GMR、 TMR 均基于磁阻原理,作为下一代磁传感器技术,凭借性能优势,渗透率正日益提升,主要磁传感器芯片厂商均有所布局。

  目前 AMR/GMR 技术已在轮速、方向盘转角/扭矩、电子节气门位臵、曲轴和凸轮轴转速等传感器领域得到规模化应用, 我们估计 TMR 有望于未来 2 年在电动助力转向(EPS)系统中开始切入。

  传感器厂商中, Conti 及 Denso 大力推广 xMR 技术, Conti 采购 NXP 芯片,将 AMR技术引入大部分产品线,而 Denso 依靠其在霍尔传感器领域丰富的产品经验,自制 AMR芯片以开发新一代传感器。目前来看, AMR 传感器配套的 OEM 以美系、日系为主。

  从芯片厂商的技术路线来看, xMR 领域布局各有侧重。NXP 在 AMR 领域优势显著,2015 年其 AMR 芯片市占率 70%, Allegro 及 Infineon 有小批量的 GMR 芯片出货,而TDK 依靠传统磁头业务 TMR 技术积淀深厚。

  TMR 传感器的性能提升十分显著,利用磁性多层膜材料的隧道磁电阻效应,与霍尔元件、 AMR、 GMR 相比, 优势突出:

  第三, 敏感性很强,规模上量后成本更低, 霍尔元件需要用钕铁硼等强力磁铁。

  1、 角度、转速、位臵类传感器:包括BLDC转子位臵、方向盘转角、轮速、节气门位臵、曲轴/凸轮轴角度等功能安全等级要求非常高的应用场合。

  2、 液位传感器:TMR 取代干簧管, 干簧管容易破裂、 一致性差、 成本比较高, TMR灵敏度较高、成本低、克服破碎问题。

  MEMS 传感器(Micro-Electro-Mechanical System) 是一个将微型机械结构、微型传感器、微型执行器、信号处理和控制电路以及接口、通信和电源模块都集成于芯片上的微机电系统,在汽车上大范围的应用于压力类以及运动类传感器。

  根据 Bosch 估计, 目前一辆汽车上安装有超过 50 个 MEMS 传感器, 我们估计单车价值量 500-1000 元。应用较多的是压力传感器、 加速度计、陀螺仪及磁力计等惯导系统传感器。这一些产品虽都采用微机电系统封装,但对应原理各不相同。

  MEMS 传感器的优势非常显著,高集成、小尺寸、低成本,已经实现全自动化控制,适合大规模批量生产, 1995 年由博世量产,目前在汽车行业已经获得大规模应用, 根据 IHS 估计, 汽车行业 MEMS 持续保持 3.3%的稳定增长水平。

  从行业格局来看, Bosch、 ST、 TI 在产品线布局、市场占有率方面都占据绝对领导地位;AKM 等磁传感器厂商从电子罗盘切入;MEMSIC、ADI则一直专注包括汽车加速度计、陀螺仪、磁力计在内的惯性模块 IMU;TDK 先后收购压力传感器公司 EPCOS、惯性传感器公司Invensense、 Tronics 等,补充 MEMS 产品线。

  与数字 IC 不同, MEMS 芯片对电特性和机械特性要求都很高, 对于传感器供应商来说,芯片能力和封装工艺都是核心技术。我们估计 MEMS 芯片与 ASIC 的成本合计占比超过 60%。同时, 封装需要仔细考虑温度、化学、应力等因素,对传感器性能也有比较大的影响。

  以 MEMS 压力传感器的制作的完整过程为例,需要在硅片上通过氮化硅薄膜热沉积、光刻、金属离子注入等工艺制备出压力敏感电阻与金属的互连引线后,在硅片背面进行各向异性湿法腐蚀,通过调整腐蚀速率和时间来控制压力敏感膜的厚度,最后用玻璃进行键合作为芯片的支撑架构。我们估计需要 7-8 层衬底,需要一层一层去做沉积、光刻、注入、腐蚀等过程,对温度控制精度、应力的要求非常高。而且衬底不仅是硅,还有金属、塑料、陶瓷、聚合物等。

  纵观整条产业链, 我们得知 MEMS 以及 ASIC 芯片的竞争格局相对集中,主要供应商有 Bosch、 Sensata、 NXP(Freescale)、 Denso、 Infineon、 ADI 等;传感器产品供应商更为分散,主流企业包括 Bosch、 Sensata、 Denso、 Conti、 Delphi、TE、 Amphenol等。其中 Bosch 具备全产业链能力, 采用 IDM 模式, 从晶圆厂到最终的汽车电子系统均自行生产;Sensata 具备芯片设计能力及传感器产品的开发制造能力,但采用Fabless 模式, 芯片全部由晶圆厂代工;其余的 NXP、 Infineon、 ADI、 ST 等芯片厂商则结合 IDM 及 Fabless 两种模式,根据产品线的不同灵活布局.

  压力 MEMS:大多基于硅的压阻效应,压力作用于硅薄膜引起 4 个电阻应变片电阻的变化,惠斯顿电桥输出与压力成正比的电压信号,适用于中低压场景,如发动机进气歧管、胎压检测系统 TPMS、真空度、油箱压力等。中、高压场合多采用陶瓷电容的技术路线。

  汽车 MEMS 压力传感器技术已十分成熟, 汽油车安装数量普遍在 15-20 个左右,单车价值 300-500 元,大多分布在在动力传动及排放系统。

  从市场需求看,欧美日等发达市场趋于平稳,相比较而言中国市场正迅速增加,主要有两个原因:一是 2020 年 1 月 1 日起所有乘用车强制安装 TMPS,要增加 4 个胎压传感器,单车价值 100-120 元左右, 二是国六排放标准于 2020 年在全国范围内推广,要增加 4 个左右压力传感器,单车价值 100-120 元左右。

  一辆乘用车普遍安装运动类传感器 10-15 个,平均单价 20 元,对应单车价值量200-300 元,大多数都用在监测车身姿态,如车身的加速度、角速度,为安全气囊、车身稳定控制(ESP)等汽车电子系统提供信号输入。

  汽车运动类传感器的需求将小幅增加, 我们估计复合增速不超过 5%, 主要受益全球尤其发展中国家,汽车安全气囊、 ESP 配臵比例提升以及功能逐渐完备,如侧面气囊的引入将增加 4 个加速度计和 2 个压力计,车外行人气囊的引入将增加 1 个压力计。

  目前车辆上常用 ESP 系统的 MEMS 加速度计、陀螺仪来进行惯性导航,精度较差,不足以满足无人驾驶的舒适性要求,精度亟待提升,同时为降低成本,集成度也慢慢变得高。

  1、 加速度计、陀螺仪、地磁力计集成封装,即从独立的 3 轴传感器到两两封装形成 6 轴电子罗盘 e-compass 或 6 轴 IMU 模块,再到共同集成为 9 轴 IMU模块,有些甚至还将压力传感器封装进来成为 10 轴 IMU;

  2、 与全球卫星导航系统 GNSS、激光雷达等共同融合用于无人驾驶系统中的车辆精确定位,精度要求高达厘米级别。根据 iHS Markit, L4/L5 级别 IMU 中对陀螺仪的零偏不稳定性要求范围在1°/h-0.1°/h,而单轴价格在 10-100 美元的水平(三轴 30-300 美元),考虑集成加速度计、部分厂商集成磁力计,我们估计 IMU 价格至少是百美元的量级。

  另一方面,战术级 IMU 从军事领域渗透至智能驾驶领域,但仍价格高昂,比如 ADI公司战术级 IMU 产品 ADIS16497 单价超过 1700 美元(>

  1000 只), 我们判断在规模化应用之前仍存在巨大的降价诉求。

  加速度 MEMS:基于牛顿第二定律,通过在加速过程中对质量块对应惯性力的测量来获得加速度值。采用电容式、压阻式或热对流原理,分为低 g(重力加速度)和高 g两大类,不同之处在于测量的加速度范围不同, ±2g~±24g等低/中 g 传感器用于主动悬架、ESP、侧翻、导航等非安全类系统, ±200g 等高 g 传感器用于气囊等安全系统。

  角速度 MEMS/陀螺仪:基于 Coriolis 力原理:一个物体在坐标轴中直线移动时,假设坐标系旋转,物体会受到一个垂直的力和垂直方向的加速度。MEMS 陀螺仪通常安装两个方向的可移动电容板,径向电容板加振荡电压迫使物体作径向运动,而当旋转时,横向电容板能够测量由于横向 Coriolis 运动带来的电容变化,从而计算出角速度。最多可测量 x/y/z 三轴角速度,用于侧翻、车身稳定控制系统、惯性导航 IMU 等。

  磁力计:运动过程中地磁场改变磁力计主磁场方向,从而引起导电薄膜内磁场方向与电流夹角值变化,而夹角的变化与电阻值呈线性关系,通过换算能确定与地磁场的相对位臵来做定位。磁力计主要与加速度计、陀螺仪一起,应用于惯性导航系统中(Dead Reckoning), 用于在 GPS 信号缺失时,经过测量与地磁场的相对位臵来判断汽车的航向角及姿态。磁力计基于磁效应,采用 MEMS 工艺,由于霍尔效应灵敏度难以达到一定的要求,普遍应用 AMR 来感应地磁场。

  汽车中一般设臵前氧和后氧两个氧传感器,单价在 150 元左右。汽车氧传感器具备极高的技术壁垒,全球市场主要被博世、 NTK 等外资垄断, 目前博世的市场占有率超过85%,本土传感器供应商集中在国内外的售后市场。

  前氧传感器检验测试混合排气中氧的含量, 并反馈给发动机 ECU 修正喷油量,控制混合气的空燃比在理论值附近,使三元催化达到效率最高。后氧传感器检测催化转化后混合气体中的氧含量,用来判定三元催化转化器是否失效。

  从成本结构看, 我们估计芯片采购大约 25 元,封装、组装后成本大约 50 元,对应传感器的毛利率在 70%左右。芯片的成本占比并不高,是传感器的核心壁垒。以 FAE的陶瓷芯片为例,需要 12 层的加工工艺,高温烧制工艺技术要求极高。

  氮氧化物传感器主要使用在在柴油车后处理 SCR 系统(Selective Catalytic Reduction System),用于检测尾气催化还原之后 NOx的含量是不是满足排放要求。

  NOx 传感器,与氧传感器类似,核心壁垒在陶瓷芯片,目前全球前装市场被大陆、NTK、博世等外资垄断,每个车上 1 只,单价 600 元左右,我们估计毛利率超过 50%。

  氮氧传感器长期工作在高温恶劣工况下, 每 6000 小时要换掉, 对应商用车平均1-2 年,乘用车平均 8-10 年。

  国内传感器供应商集中在售后市场,其中温州百岸引入德国 KEKO 的高温共烧陶瓷(High Temperature co-fired Ceramic, HTCC)生产设备,并与中国科学院和上海交通大学合作, 目前已成长成为全世界第一的 NOx 传感器后市场供应商。

  汽车上普遍用热敏电阻来测量温度,可分为 PTC 和 NTC 两类,汽油车单车用量 5-10个,纯电动汽车在 15-20 个, 主要企业包括 TDK(EPCOS)、 Amphenol、 TE 等,普遍具备热敏电阻自制能力,国内企业华工高理、汇北川同样进入前装体系,并批量供货,但热敏电阻采购外资为主,如 Murata、 Semitec。

  NTC:电阻随温度上升而降低,主要用来测量气体、液体、环境和温度,包括冷却液、进气管、空调蒸发器出口、车内外等温度检测, 基本在 200℃以下,平均单价在 5-10 元。

  PTC:超过一定温度时,电阻明显增大, 大多数都用在过流保护、温度限制、加热等场景,如电机保护传感器,单价与 NTC 相当。

  面对高温场合,如发动机排气歧管、三元催化器温度高达 800℃以上, 传统的热敏电阻不足以满足要求,通常采用铂电阻温度传感器进行测量,我们估计单价在 50 元左右,汽油、 柴油车单车用量分别为 1、 4 个, 全球市场基本被 Sensata、 NTK、 Denso 垄断,国内企业尚不具备前装大批量供货能力。

  与汽油车相比,纯电动汽车的动力系统更加简单,电气化程度更高,传感器的类型和数量均有不小的变化。

  总的来说,我们估计动力传动系统的传感器数量从 45-60 个减少至 20-35 个, 单车价值量从 1000-1700 元降至 300-800 元,大规模放量后,有可能降至 500 元以下,主要为电流和温度两大类传感器。

  1)磁传感器:发动机、变速器中 10-20 个位臵/转速类传感器基本不再需要, BEV新增电流传感器 10 个左右。

  2) MEMS:发动机、变速器中 10 多个压力 MEMS 不再需要, 底盘系统中真空助力泵压力传感器 BEV 也不需,而加速度、角速度等惯性传感器不受影响。

  3)化学类:汽油发动机中氧传感器、爆震传感器、 空气/燃料流量传感器等 5 个左右高价值量的化学类传感器不再需要, 总价值量超过 300 元。

  4)温度:发动机、变速器中有 5-10 个 NTC, 而 BEV 中电池包 10-20 个 NTC,电机 1-2 个 NTC;而高温铂电阻传感器不再需要。

  电动汽车上电流传感器用于测量电气系统的电流大小,单车用量 10 个左右, 我们估计目前总价值 300-400 元(小批量单价高)。

  电流传感器可分为两种类型:一种是霍尔式电流传感器,测量电池包、电机控制器的电流,单价较高,单车用量 5 个左右;另一种是电流互感器 CT,测量 OBC、 DCDC的电流,单价较低,单车用量 6 个左右。

  从竞争格局看, Lem、 Melexis、 Allegro、 Honeywell 是电动汽车电流传感器的主流竞争者,国内的电动汽车上的霍尔式电流传感器大部分采用莱姆 Lem,还有部分采用Allegro、霍尼韦尔 Honeywell 等国外厂商的产品。而 TMR 领域将成为电流传感器下一个竞争领域,各厂商都处于积极布局的阶段。

  开环式由磁芯、霍尔元件和放大电路构成,原边导体流过电流时,磁芯将导体周围磁场聚集在开口处,开口处的霍尔元件产生同比例的电压信号,放大后进行测量;而闭环在开环基础上多了副边的补偿绕组,放大电流会将电流信号再给到副边绕组,产生与原边电流磁场大小相同、方向相反的磁场,通过这一负反馈使磁通量为零。

  闭环与开环相比,优点在于响应时间更快、带宽更宽,而且不受磁芯非线性和磁滞效应影响,线性度和精度更优越,精度可达 0.2%。缺点在于需要缠绕副边绕组,成本高,且线圈缠绕对生产要求高。

  霍尔电流传感器与电流互感器 CT 相比优势体现在各个方面:1) CT 只能测量交流电,测量频段比霍尔式窄;2)交流 CT 如果开路会产生高电压,有可能击穿绝缘电路,因此二次侧必须短接;而霍尔式不必短接;3) CT 易受电流畸变、多次谐波、非正弦波等影响,精度低于霍尔式;4)霍尔式线性度、动态性能、响应时间、体积上都有优势。霍尔式逐步取代 CT 的份额是一大趋势。

  TMR 技术在磁传感器领域兴起变革已成定局,电流传感器也不例外。TMR 基于磁阻效应的原理测量电流, 不仅体积大大减小,而且带宽高,响应时间快、温度特性好。我们认为电机控制器、车载充电机等功率模块向 SiC 路线转变是长期趋势。

  传统的Si 基 MOSFET 适宜于大多数频率范围的低功率控制场合,而 IGBT 由于开关频率只有10k,仅适用于低频高压范围。而 SiC Mosfet 开关频率高达 100-200k, 适宜于较高频段的全功率范围,而且具备高功率密度、低功率损耗及良好的高温稳定性。由于 SiC 功率模块的开关频率是传统 IGBT 10-20 倍,对电流传感器的响应速度要求很高,霍尔式无法满足规定的要求,所以 SiC 路线与 TMR 将成为相辅相成的长期趋势。

  在汽车圈,比亚迪素有“公路坦克”的称号,2018年比亚迪唐DM在C-NCAP中首次“撞”出了5星评级这一新能源汽车最好成绩;2019年在中国最严格的碰撞测试C-IASI中保研公布的碰撞测试成绩中,比亚迪唐获得了“GOOD”的最高评级,比亚迪的安全性能一次又一次的得到权威安全测试机构的肯定。 汽车安全是一个亘古不变的话题,跟着时间的推移,安全的定义也在悄然发生改变。如今的碰撞测试已不再单单是保护乘客的安全那么片面了,时代在进步,测试安全标准也在发生着改变。在新的安全标准下,比亚迪是如何与时俱进,高分通过碰撞测试的呢? 比亚迪的“四位一体” 双安全原则 比亚迪新能源汽车对碰撞始终秉持“四位一体”的“双安全”原则,其

  安全都有啥? /

  据报道,根据电动汽车市场分析机构 SNE Research 日前公布的多个方面数据显示,今年 10 月份全球电动汽车的电池用量为 7.8GWh,比去年同期减少 25.7%,连续三个月出现下滑。 SNS Research 表示:“今年 1-7 月的数据掩盖了最近三个月的负增长,预计负增长的趋势还将持续一段时间,累计增长率还会促进下降”。目前全球电动汽车电池市场中,宁德时代以 26.7%的份额排名第一,松下凭借 17.5%的市场占有率位列第二,LG 市场占有率为 14.2%位列第三,比亚迪(6.2%)和三星 SDI(5.5%)紧随其后。其中全球市场占有率排名第二的松下今年 10 月的汽车电池用量比去年同期减少了 37.8%。 “SNE

  有何利弊? /

  引言 航空 发动机 全权限数字式电子控制(FADEC)是现代战机飞行/推进系统综合控制的发展的新趋势,凭借计算机强大而快速的数字运算和逻辑判断能力来实现比机械液压式控制管理系统更先进、更复杂、更可靠的操控方法,提高了飞行/推进综合系统的控制品质。但是,若使用传统传感器的模拟信号为输出,整个飞行/推进综合系统的传感器输入信号多达30 多路,中央处理器将花费50﹪~70﹪的资源消耗在对模拟信号的数据处理、余度管理和故障诊断上,大大削弱了数字控制管理系统的优势。智能传感器的出现,为解决了这一问题开辟了广阔地前景。运用在航空控制管理系统中的智能传感器,除了发送/接收数字信号外,还执行信号采集和处理、故障自诊断、故障隔离及故障容错等任务,分担

  的设计 /

  前言 近年来的汽车市场对高效率、低耗油化以及改善耐环境性能和安全性能逐渐重视,同时电子设备的安装率也在提高。另外,与此同时还要保证车内的空间、车体的轻量化,因此安装的电子设备不得不具备小型化的特征,而安装的电路板也必须小型化。 另一方面,直接连接到电源的平滑用途、噪声去除用途的多层陶瓷电容器(MLCC)为了对应故障安全而并列配置2个的情况很常见。主要是在电路板安装后的电路板的处理场合,机械应力等会对MLCC产生裂纹,而这种裂纹很可能会引起在通电时发生燃烧的最坏后果。为了尽最大可能避免这种后果,对策是通过并列配置2个MLCC,即使1个MLCC由于机械应力产生了裂纹,电池也不可能会受到冲击。但是,由于电子设备的小型化需求,削减元件个数也

  增程式电动车相较于常规的混合动力汽车,最大的不同之处在于:发动机在电量充足的条件下完全不参与工作,即使补充电量,也只负责带动发电。这样的设计主要有三点优势:1、噪音小,在纯电续航能力中,发动机不启动,这完全是一辆 电动汽车 ;2、技术难度低,相比于发动机仍要介入驱动的混动模式,单纯的“电驱动”技术难度低,不需要仔细考虑复杂模式的切 增程式电动车工作原理 增程式燃料电池汽车其本质上仍是 电动汽车 ,只是,此“电池”是氢燃料电池。和其他蓄电池相比,氢燃料电池“不充电”,而是要补充氢气。氢气作为燃料具备诸多优势:在燃料存储上,氢气与天然气一样安全;在燃料加注上,氢气与天然气(汽油)一样便捷;燃料电池输出的水汽,而不是液体的水;中国工

  汽车电子领域内整合主动安全机制的趋势愈演愈烈,迫使汽车制造厂商将防侧翻功能整合到传统汽车底盘控制管理系统之中,例如,制动防抱死系统和牵引力控制管理系统如今均已得到增强,整合了防侧翻功能。美国国家公路交通安全管理局(NHTSA)进一步推进了这种趋势,强制要求所有 2011 年款汽车和更新的款式必须配备防侧翻控制器。这项要求以 NHTSA 对于侧翻碰撞的事故数据分析为依据。例如,根据 NHTSA 的国家统计与分析中心提供的数据,在 2001 年,共有 10,138 人死于侧翻碰撞事故,占当年因事故死亡总人数的 32%。实施主动安全机制可降低车辆侧翻的风险,由此减少潜在伤亡。降低侧翻风险的方法之一就是实现电子稳定性控制(ESC),根据测量和预计的

  1 引言 结构光传感器是应用较早、发展较成熟的视觉传感器,因此本系统采用结构光传感器来采集图像并经图像采集卡送给计算机处理。由于视觉传感器在视觉测量中担负着视频图像信号(测量数据)的采集、切换与传输。因此,如何让视觉传感器测控系统快速、精确地获得理想的视频图像信息,进而为后期的图像处理提供较为可靠的支持,亦即视觉传感器的测控系统的设计显得很重要。  2 视觉系统的概述 视觉检测系统中采集被测物体图像的视觉传感器有单目和双目两种之分,本测控系统能使用单目视觉传感器也能够正常的使用双目视觉传感器来采集数据,本文主要讨论由多个双目视觉传感器组成的多视觉传感器测控系统,其中的每个视觉传感器采用的是目前技术已比较成熟

  控制系统的实现 /

  2023年12月15日,由中国物流与采购联合会主办,电子产业供应链分会、芯师爷承办的2023 汽车电子 供应链发展论坛在深圳湾万丽酒店圆满落幕! 本次论坛聚焦于“共建汽车电子 产业链 供应链生态圈”,旨在构建更加紧密、高效的电子产业供应链协作网络,从主机厂、零部件供应商、 元器件 分销商等多方产业链生态汇聚专家视角,共话智能浪潮下汽车电子产业链的机遇与挑战,为参会者提供了未来发展的新趋势的深刻洞见。 强链补链延链 激发“链式效应” 01、 UWB技术 在汽车领域的实践 深圳市纽瑞芯科技有限公司产品方案总监庞治华带来《UWB技术在汽车领域的实践》主题演讲,针对UWB技术做了详细介绍。作为室内 高精度定位 的最佳技术

  【DigiKey“智造万物,快乐不停”创意大赛】植物情绪监测与交互系统 代码及相关文件

  充电电压的模糊PI控制仿真研究

  类电源解决方案

  ADI世健工业嘉年华——深度体验:ADI伺服电机控制方案

  解锁【W5500-EVB-Pico】,探秘以太网底层,得捷电子Follow me第4期来袭!

  Intrinsic ID 在CES 2024上展示了其信任根 (RoT) 解决方案,该解决方案已部署在全球超过 6 5 亿台设备中。Intrinsic ID 首席执行 ...

  Arduino 和 Silicon Labs 合作,引入 Matter

  Arduino 和 Silicon Labs 宣布开展合作,将与 Matter 兼容的 SiLabs 无线微控制器引入 Arduino IDE。双方的合作包括两个阶段。第 ...

  无线解决方案为家居自动化带来了曙光,剪掉了这些繁琐的线,就减去了很多麻烦。就目前而言,无线智能家居根据所使用的技术不同,主要分 ...

  通俗来讲,智能网关和智能家居的关系就好比人与心脏。通过它,智能家居才能轻松实现系统信息的采集、信息输入、信息输出、集中控制、远程 ...

  新CPU采用该公司首个乱序架构设计,可实现更高的指令吞吐量、更好的性能和更快的处理速度。尽管 RISC-V 最初只是一个学术项目,但开源指 ...

  村田稳定、长效的负离子/活氧发生器助力智能家电厂商打造未来健康生活空间

  智己汽车:当电子电气架构迭代至中央集成式,如何布局其信息安全和功能安全?

  钠离子电池正式上车,钠电池时代线:安波福多域融合计算平台,颠覆汽车智能化?

  【泰有聊】系列技术文章连载1:示波器“芯”升级,聊一聊TEK061/041 ASIC创新平台

  考眼力:高速数字设计的秘籍 藏在哪里? 走近Keysight PATHWAVE,提升工作效率

  嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科

 

扫一扫,加微信

版权所有 © 火狐电竞(中国)官方网站IOS/安卓通用版/手机APP(www.signaljammerblockers.com)
备案号:沪ICP备05031232号-66 技术支持: Sitemap.xml